Competence-Independent Activity of Pneumococcal Enda Mediates Degradation of Extracellular DNA and Nets and Is Important for Virulence
نویسندگان
چکیده
Membrane surface localized endonuclease EndA of the pulmonary pathogen Streptococcus pneumoniae (pneumococcus) is required for both genetic transformation and virulence. Pneumococcus expresses EndA during growth. However, it has been reported that EndA has no access to external DNA when pneumococcal cells are not competent for genetic transformation, and thus, unable to degrade extracellular DNA. Here, by using both biochemical and genetic methods, we demonstrate the existence of EndA-mediated nucleolytic activity independent of the competence state of pneumococcal cells. Pneumococcal mutants that are genetically deficient in competence development and genetic transformation have extracellular nuclease activity comparable to their parental wild type, including their ability to degrade neutrophil extracellular traps (NETs). The autolysis deficient ΔlytA mutant and its isogenic choline-treated parental wild-type strain D39 degrade extracellular DNA readily, suggesting that partial cell autolysis is not required for DNA degradation. We show that EndA molecules are secreted into the culture medium during the growth of pneumococcal cells, and contribute substantially to competence-independent nucleolytic activity. The competence-independent activity of EndA is responsible for the rapid degradation of DNA and NETs, and is required for the full virulence of Streptococcus pneumoniae during lung infection.
منابع مشابه
An Endonuclease Allows Streptococcus pneumoniae to Escape from Neutrophil Extracellular Traps
Streptococcus pneumoniae (pneumococcus) is the most common cause of community-acquired pneumonia, with high morbidity and mortality worldwide. A major feature of pneumococcal pneumonia is an abundant neutrophil infiltration . It was recently shown that activated neutrophils release neutrophil extracellular traps (NETs), which contain antimicrobial proteins bound to a DNA scaffold. NETs provide ...
متن کاملMidcell Recruitment of the DNA Uptake and Virulence Nuclease, EndA, for Pneumococcal Transformation
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA ...
متن کاملMutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae
EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overco...
متن کاملStructural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host's neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1...
متن کاملPneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system.
Activation of the CiaRH two-component signaling system prevents the development of competence for genetic transformation in Streptococcus pneumoniae through a previously unknown mechanism. Earlier studies have shown that CiaRH controls the expression of htrA, which we show encodes a surface-expressed serine protease. We found that mutagenesis of the putative catalytic serine of HtrA, while not ...
متن کامل